

Year 11 Mathematics Specialist Test 2 2022

Section 1 Calculator Free Vectors

STUDENT'S NAME

MALICING KEY

DATE: Friday 1st April

TIME: 30 minutes

MARKS: 30

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (3 marks)

Given $\underline{a} = \begin{pmatrix} -2 \\ 6 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} 12 \\ x \end{pmatrix}$. Determine the value of x if \underline{a} and \underline{b} are perpendicular vectors.

$$\begin{array}{c} \alpha \cdot b = 0 \\ \left(\frac{-2}{6} \right) \cdot \left(\frac{12}{12} \right) = 0 \\ -24 + 6\pi = 0 \end{array}$$

2. (9 marks)

Given the vectors $\underline{a} = 4\underline{i} - 2\underline{j}$, $\underline{b} = -3\underline{i} + 3\underline{j}$ and $\underline{c} = x\underline{i} - 5\underline{j}$, determine the following:

(a) The exact magnitude of a in simplest surd form.

$$|\alpha| = \sqrt{16+4} \qquad = 2\sqrt{5} \qquad /$$

(b) Vector \underline{d} , which is a vector twice as long as \underline{c} , but in the opposite direction. [2]

$$d = -2(xi_2 - 5j)$$

$$= -2\pi i_2 + 10j$$

$$2(-\pi)$$

$$5$$

(c) The angle that b makes with the positive x axis.

$$\tan \theta = \frac{3}{3} \qquad \text{angle is } 135^{\circ} /$$

$$\theta = 45^{\circ} /$$

(d)
$$e$$
, given that $e = 4a - b$ [2]
$$e = 4 \begin{pmatrix} 4 \\ -2 \end{pmatrix} - \begin{pmatrix} -3 \\ 3 \end{pmatrix}$$

$$e = \begin{pmatrix} 19 \\ -11 \end{pmatrix}$$

(e) $\hat{\underline{a}}$, a unit vector in the same direction as \underline{a} .

$$\hat{a} = \frac{1}{2\sqrt{5}} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$$

[1]

[2]

[2]

- 3. (10 marks)
 - (a) Given that $|\underline{a}| = 4$, $|\underline{b}| = 3$ and $\underline{a} \cdot \underline{b} = -6$
 - (i) Determine the size of the angle between vectors \underline{a} and \underline{b} .

$$\begin{array}{rcl}
\cos \theta &=& \underline{\alpha \cdot b} \\
& |\alpha||b| & \theta &= 120^{\circ} \\
& & = \frac{-6}{17}
\end{array}$$

(ii) Determine the exact value of |a - b|.

If
$$\alpha \cdot \alpha = |\alpha|^2$$

$$(\alpha - \beta) \cdot (\alpha - \beta) = |\alpha - \beta|^2 \checkmark$$

$$\alpha \cdot \alpha - 2\alpha \cdot \beta + \beta \cdot \beta$$

$$4^2 - 2(-6) + 3^2 \checkmark = \sqrt{37} \checkmark$$

(b) Given $c = \begin{pmatrix} 5 \\ -1 \end{pmatrix}$ and $d = \begin{pmatrix} -2 \\ 5 \end{pmatrix}$. Determine the vector projection of d onto c.

$$|\zeta| = \sqrt{5^2 + 1^2}$$

$$= \sqrt{26}$$

$$= \left[\begin{pmatrix} -2 \\ 5 \end{pmatrix}, \frac{1}{126} \begin{pmatrix} 5 \\ -1 \end{pmatrix} \right] \times \frac{1}{126} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$

$$= \frac{1}{126} \begin{pmatrix} -15 \end{pmatrix} \times \frac{1}{126} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$

$$= \frac{-15}{26} \begin{pmatrix} 5 \\ -1 \end{pmatrix}$$

(c) Explain the difference between a vector projection and a scalar projection

scalar proj is just a magnitude whilst vector proj also has a direction.

[1]

[2]

[3]

4. (3 marks)

Ship A has a position vector of $\binom{5}{7}$ km. Relative to a second ship, B, ship A has a position vector of $\binom{-6}{11}$ km. Determine the exact distance of ship B from the origin.

$$\int_{-\infty}^{\infty} BA = \begin{pmatrix} -6 \\ 11 \end{pmatrix}$$

$$\begin{array}{l}
\Gamma \\
AB \\
\begin{pmatrix}
-6 \\
11
\end{pmatrix} = \begin{pmatrix}
5 \\
7
\end{pmatrix} - \begin{pmatrix}
a \\
b
\end{pmatrix}$$

$$a = 11$$

$$b = -4$$

$$= \begin{pmatrix} 11 \\ -4 \end{pmatrix}$$

$$|b| = \sqrt{11^2 + 4^2}$$

$$= \sqrt{137} \sqrt{}$$

OB = OA + AB

= (11)

= $\begin{pmatrix} 5 \\ 7 \end{pmatrix} + \begin{pmatrix} 6 \\ -11 \end{pmatrix}$

5. (5 marks)

Consider the figure ABCD below which is a parallelogram.

Let $\overrightarrow{AB} = \underline{b}$ and $\overrightarrow{AD} = \underline{d}$

Prove that the diagonals AC and BD are perpendicular only when $|\underline{b}| = |\underline{d}|$.

$$\overrightarrow{AC} = \cancel{b} + \cancel{d}$$

$$(b+d) \circ (d-b) = 0$$
 for \bot

$$= \sum_{b \cdot d} - b \cdot d + d \cdot d - b \cdot b = 0$$

$$=) -b^2 + d^2 = 0$$

$$=> ||\underline{b}||^2 = |\underline{d}|^2$$

Year 11 Mathematics Specialist Test 2 2022

Section 2 Calculator Assumed Vectors

STUDENT'S NAME

MARKING KEY

DATE: Friday 1st April

TIME: 20 minutes

MARKS: 20

INSTRUCTIONS:

Standard Items:

Pens, pencils, drawing templates, eraser

Special Items:

Three calculators, notes on one side of a single A4 page (these notes to be handed in with this

assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

6. (3 marks)

If $a \cdot b = a \cdot c$ and $a \neq 0$ then what is the relationship between the vectors a, b and c.

$$a \cdot b = a \cdot c$$

$$a \cdot b - a \cdot c = 0$$

$$\alpha \cdot (b - c) = 0$$

vector a is perpendicular to b-c

7. (8 marks)

> Jetties A and B are on opposite banks of a river such that $\overrightarrow{AB} = \begin{pmatrix} 100 \\ 250 \end{pmatrix}$ km. A person travelling on a jet ski can maintain a speed of 70 km/h in still air. During the trip from A to B a wind is blowing with a velocity of $\begin{pmatrix} 5 \\ -2 \end{pmatrix}$ km/h.

(a) Draw a diagram of the above situation.

[2]

(b) Determine the velocity vector, in component form, the jet ski rider must set so that he travels directly from jetty A to jetty B. [4]

$$\sqrt{a} = \begin{pmatrix} a \\ b \end{pmatrix} \qquad \sqrt{b} = \begin{pmatrix} 5 \\ -2 \end{pmatrix} \qquad \sqrt{c} = \begin{pmatrix} 5 + a \\ b - 2 \end{pmatrix}$$

$$|\frac{1}{2}| = \sqrt{a^2 + b^2}$$

$$70 = \sqrt{a^2 + b^2}$$

$$a = 20.92$$
 $b = 66.8$

$$t(5+a) = 100$$
 $t(b-1) = 250$

$$V = \begin{pmatrix} 20.92 \\ 66.8 \end{pmatrix}$$

of $20.92i + 66.8j$

(c) Determine the total time taken, in minutes, to travel from jetty A to B. [2]

8. (5 marks)

Given that $\underline{a} = 3i + 5j$ and $\underline{b} = xi + yj$ determine x and y if $|\underline{b}| = \sqrt{10}$ and the acute angle between the vectors is 60°

$$a \cdot b = |a||b| \cos \theta$$

 $3\pi c + 5y = \sqrt{34}\sqrt{10} \cos 60^{\circ}$

(1)
$$3x + 5y = \frac{1}{2}\sqrt{340}$$

$$2) \sqrt{\chi^2 + y^2} = \sqrt{10}$$

$$y = -1.53$$
 / or $y = 3.76$

$$y = -0.53$$

 $|a| = \sqrt{3^2 + 5^2}$ = $\sqrt{34}$

9. (4 marks)

The following diagram shows forces F_1 and F_2 acting on point O.

If $|F_1| = 1600 \text{ N}$ and $|F_2| = 900 \text{ N}$, determine the magnitude and bearing of a single force F_3 that would keep the system in equilibrium.

$$F_{1} + F_{2} = \begin{pmatrix} 1600 \\ 2(-150^{\circ}) \end{pmatrix} + \begin{pmatrix} 900 \\ 2(-45^{\circ}) \end{pmatrix} \checkmark$$

$$= \begin{pmatrix} -749.24 \\ -1436.40 \end{pmatrix}$$

$$F_3 = \begin{pmatrix} 749.24 \\ 1436.40 \end{pmatrix}$$